A 3-Dimensional Percept in the Absence of Fusion: What Cochlear Implants Have Taught us About the Developing Auditory System

Blake C. Papsin

Cochlear Implant Team 2018

Cochlear Implant Research Team

DIRECTORS

- Karen Gordon
- Blake Papsin
- Sharon Cushing

RESEARCH COORDINATORS

- Carmen McKnight
- Christina Lavallee

GRADUATE STUDENTS

- Salima Jiwani
- Melissa Polonenko
- Nikolaus Wolter
- Morrison Steel
- Michael Deighton
- Sara Giannantonio
- Josh Gnanasegaram

POST-DOCTORAL FELLOWS

- Vijayalakshmi Easwar
- William Parkes
- Shazia Peer

FUNDING

- CIHR
- SickKids Foundation

CIHR IRSC

COLLABORATORS

Local - Sick Kids

- Bob Harrison
- Susan Blaser
- Adrian James
- Sam Doesburg
- Vicky Papaioannou

Local - External

- Sandra Trehub
- Frank Russo

International

- Robert Cowen
- Richard van Hoesel

Introduction

- life survives

$5^{\text {th }}$ Latin America Pediatric Conference, Mexico City; 22 Aug, 2018

Introduction

- life survives

- evolution/plasticity
- genetic
- facultative

Introduction

- life survives

- evolution/plasticity
- genetic
- facultative

Facultative Evolution

Fusion of Auditory Information

- feature extraction
- binaurality
- fusion of the image
- assembly of the auditory environment
- effort

Fusion of Auditory Information

- feature extraction
- binaurality
- fusion of the image
- assembly of the auditory environment
- effort

Fusion of Auditory Information

- feature extraction
- binaurality
- fusion of the image
- assembly of the auditory environment
- effort

Fusion of Image

- functional requirement

Pigeon

Prey

Owl

Monocular vision
Predator

No Fusion of Auditory Image!

- Mantis religiosa
- 1 ear
- 2 eyes
- 3 simple eyes between them
- prey comes to it

Snake's Ears

- no eardrum or external ear
- not coupled
- bone conduction
- rudimentary binaurality is possible

Binaural Perception

- source localization/position
- timing cues/direction
- loudness cues/speed
- effortful reassembly
- experience
- pattern perception

Binaural Perception

- source localization/position
- timing cues/direction
- loudness cues/speed
- effortful reassembly
- experience
- pattern perception

Human = Language Predators

olfaction vision motor skill

SickKids Bilateral Experience

> Sequential implants
> - $\mathrm{n}=195$
> - Age at 1 st implant $=3.5 \pm 3.2 \mathrm{yrs}$
> Age at $2^{\text {nd }}$ implant $=9.8 \pm 4.8 \mathrm{yrs}$
> - Inter-implant delay $=6.3 \pm 4.1 \mathrm{yrs}$

Brainstem Asymmetry (Bilateral)

Simultaneous Implantation

Sequential Implantation (>2 years)

Studying Binaural Perception

Studying Binaural Perception

Normal hearing $(n=7)$

Sequential bilateral $C l(n=16)$

Unilateral CI $(n=8)$

Simultaneous bilateral $\mathrm{Cl}(n=10)$

Aural Preference

* $\mathrm{P}<0.05$
(Brain 2013)

Aural Preference - Normal Hearing

Abnormal Aural Preference

Abnormal Aural Preference

Aural Preference Plot

- Normal hearing - click
\diamond Normal hearing - toneburst

Aural Preference Plot

- Normal hearing - click
\diamond Normal hearing - toneburst
oSimultaneous CI-4-6 years

Aural Preference Plot

- Normal hearing - click
\diamond Normal hearing - toneburst
- Bilateral CI - 3-4 years

Brainstem Asymmetry (Bimodal)

Bimodal Hearing

Traditional
 n=44 (40\%)

Non-Traditional Symmetric
$\mathrm{n}=32$ (30\%)

Non-Traditional Asymmetric

$$
\mathrm{n}=33(30 \%)
$$

Bimodal Hearing

Electric Ear (CI)

Aided
Acoustic Ear (HA)

Aural Preference Plot

- Normal hearing - click
\diamond Normal hearing - toneburst
- Bimodal hearing - first year

Speech Perception in Binaural Listeners

Preserving Residua Harmful?

Implications

- auditory pathways develop abnormally with asymmetric hearing
- asymmetric input before implantation
- unbalanced input after implantation (bilateral devices)
- informed our actions
- changed implantation criteria
- bilateral balance in addition to unilateral target fitting

Single Sided Deafness in Children

68% of children are candidates

27\% decline implantation ($\mathbb{\downarrow}$)

35% have cochlear nerve aplasia (=)

Cochlear Nerve Aplasia

33% of children go on to implant

Risk of Progression

10 congenital CMV 74 mechanical trauma
3 cochleovestibular anomaly
1 noise induced trauma
1 post-meningitis
1 idiopathic SSNHL
1 unknown
1 mild CN hypoplasia

33% of children go on to implant

Risk of Progression

Sudden Onset
Post lingual
33% of children go on to implant

Risk of Progression

Sudden Onset
Post lingual

Congenital CMV and SSD

- 22% of the total cohort
- almost as common as nerve aplasia/hypoplasia

- 46\% of those implanted

SSD in cCMV Progresses to Bilateral

Progression of Hearing Loss in cCMV

Acceptability of Implants in SSD

- perceptual benefit
- surgical risk
- medicalization

Acceptability of Implants in SSD

- perceptual benefit
- perceptuaberenefit
- surgical risk
- supglieallifistion
- medicalization

Implants in SSD

- 1/3 decline, 1/3 CN aplasia, 1/3 cCMV,
- risk of progression, sudden onset

Aural Preference Plot - SSD

$\square \mathrm{s} 1 \Delta \mathrm{~s} 2 \mathrm{O} 3 \mathrm{D}$ S4 $\diamond \mathrm{s} 5$

Acute Stimulation

0.5 ± 0.7 Weeks | Early Chronic Stimulation |
| :---: |
| 1.1 ± 0.2 Months | | Chronic Stimulation |
| :---: |
| 5.8 ± 3.4 Months |

Aural Preference Plot - SSD

\square
Acute Stimulation
0.5 ± 0.7 Weeks
Early Chronic Stimulation
Chronic Stimulation 1.1 ± 0.2 Months $5.8 \pm$ 3.4 Months

Aural Preference Plot - SSD

$\square \mathrm{S} 1 \Delta \mathrm{~s} 2 \mathrm{O} 3 \mathrm{\nabla} \nabla \mathrm{~S} 4 \diamond \mathrm{~S} 5$

Acute Stimulation

0.5 ± 0.7 Weeks | Early Chronic Stimulation |
| :---: |
| 1.1 ± 0.2 Months | | Chronic Stimulation |
| :---: |
| 5.8 ± 3.4 Months |

P1 Localizes to Temporal Lobes

Source Activity Underlying Peak 1 (P1)

Duration of Stimulation

Cl in Congenital SSD

\% $\%$ PL ANT
H2MLANT

- period of deprivation critical
- abnormal aural preference resolvable
- cochlear implantation very promising in young children with congenital single sided deafness

Functional Impact?

$5^{\text {th }}$ Latin America Pediatric Conference, Mexico City; 22 Aug, 2018

Asymmetry \& Speech Perception

(Otolneurotol. 2000)

Calculation: Spatial Unmasking

(noise at 0°) vs. (noise at 90°)

Calculation: Spatial Unmasking

(noise at 0°) vs. (noise at 90°)

Spatial Unmasking is Possible

Spatial Unmasking is Possible

Inter-Aural/Implant Level \& Timing Differences

Normal

Intra-Aural/Implant Loudness
Difference Condition

Intra-Aural/Implant Timing
Difference Condition

Binaural Fusion

Inter-Aural/Implant Level \& Timing Differences and "Fusion"

Level Cues

Unilateral control

ITD $=0 \mathrm{~ms}$
Electrode = 20

Timing Cues

c 1 O
$\mathrm{c}_{12} 000000$
000

Fusion - Image Assembly

- chameleon
- independent eyes
- depth perception
- accurate

hunters

Fusion - Image Assembly

- chameleon
- independent eyes
- depth perception
- accurate hunters

Inter-Aural/Implant Level \& Timing Differences

Group

- Normal Hearing
- Experienced Simultaneous BiCl Users
- Experienced Sequential BiCl Users

Inexperienced Sequential BiCl Users
Bimodal Users

Fusion - Image Assembly

- chameleon
slow prey
pseudo-fusion

Increased Time \& Increased P2 Amplitude

Increased reaction time - emotpernainndipeethafter auditory training

Hopyan et al. Child Neuropsychiremph(apa9)al. Clinical Neurophysiology (2009)

Processing = Effort

Binaural fusion \& listening effort

Pupil Diameter vs. Reaction Time

Jiwani et al. Clinical Neurophysiology (2013)
Gordon et al. Frontiers in Auditory Cognitive Neuroscience (2013)

Conclusion

- conventional auditory image fusion does not occur
- absent timing cues
- disparate time of arrival
- effort required for sensory assembly
- pseudo fusion
- time
- cognitive resource

Understanding Audition

$\because \rightarrow P L$ ANT
INPLANT
PROGRAM

- the "auditory system" makes full use of sensory data
- novel methods of data processing are employed....
- ...precisely because assembling correctly promotes facultative evolution

