A 3-Dimensional Percept in the Absence of Fusion: What Cochlear Implants Have Taught us About the Developing Auditory System

> **PHONAK** life is on

SickKidš

OCHLEAR

PROGRAM

SICK CHILDREN

Cochlear Implant Team 2018

- Blake Papsin
- Vicky Papaioannou
- Karen Gordon
- Sharon Cushing

- Gina Goulding
- Naureen Sohail
- Laurie MacDonald
- Patt Fuller
- Adrian James

- Mary Lynn Feness
- Pat Di Santos
- Nancy Greenwald-Hood •
- Susan Druker

- Valerie Simard
- Rebecca Malcomson Joelene Huber

York U P

- Gillian Lieberman
- Stephanie Jewell

Cochlear Implant Research Team

DIRECTORS

- Karen Gordon
- Blake Papsin
- Sharon Cushing

RESEARCH COORDINATORS

- Carmen McKnight
- Christina Lavallee

GRADUATE STUDENTS

- Salima Jiwani
- Melissa Polonenko
- Nikolaus Wolter
- Morrison Steel
- Michael Deighton
- Sara Giannantonio
- Josh Gnanasegaram

COLLABORATORS

Local – Sick Kids

- Bob Harrison
- Susan Blaser
- Adrian James
- Sam Doesburg
- Vicky Papaioannou

Local - External

- Sandra Trehub
- Frank Russo

International

- Robert Cowen
- Richard van Hoesel

POST-DOCTORAL FELLOWS

- Vijayalakshmi Easwar
- William Parkes
- Shazia Peer

FUNDING

- CIHR
- SickKids Foundation

Introduction

life survives

- evolution/plasticity
 - genetic
 - facultative

Introduction

- life survives
- evolution/plasticity
 - genetic
 - facultative

Introduction

- life survives
- evolution/plasticity
 - genetic
 - facultative

Facultative Evolution

Starlings at Otmoor http://www.youtube.com/watch?v=XH-groCeKbE (Dylan Winter)

Fusion of Auditory Information

- feature extraction
 - binaurality
 - fusion of the image
- assembly of the auditory environment
 - effort

Fusion of Auditory Information

- feature extraction
 - binaurality
 - fusion of the image
- assembly of the auditory environment
 - effort

Fusion of Auditory Information

- feature extraction
 - binaurality
 - fusion of the image
- assembly of the auditory environment
 - effort

Fusion of Image

No Fusion of Auditory Image!

- Mantis religiosa
- 1 ear
- 2 eyes
 - 3 simple eyes between them
- prey comes to it

Snake's Ears

- no eardrum or external ear
- not coupled
- bone conduction
- rudimentary binaurality is possible

Binaural Perception

- source localization/position
 - timing cues/direction
 - loudness cues/speed
- effortful reassembly
 - experience
 - pattern perception

Binaural Perception

- source localization/position
 - timing cues/direction
 - loudness cues/speed
- effortful reassembly
 - experience
 - pattern perception

SickKids Bilateral Experience

Gordon et al. • Binaural Interaction in Brainstem of Deaf Children

Brainstem Asymmetry (Bilateral)

Simultaneous Implantation

(J Neuroscience 2012)

Studying Binaural Perception

Studying Binaural Perception

Right auditory cortex

Aural Preference

(Brain 2013)

(Brain 2013)

Abnormal Aural Preference

(Brain 2013)

Abnormal Aural Preference

Brainstem Asymmetry (Bimodal)

Absolute Latency (immediately and always)

(Audiol Neurotol 2015)

Bimodal Hearing

Non-Traditional Symmetric n=32 (30%)

Non-Traditional Asymmetric n=33 (30%)

Bimodal Hearing

Speech Perception in Binaural Listeners

Preserving Residua Harmful?

Implications

- auditory pathways develop abnormally with asymmetric hearing
 - asymmetric input before implantation
 - unbalanced input after implantation (bilateral devices)
- informed our actions
 - changed implantation criteria
 - bilateral balance in addition to unilateral target fitting

Single Sided Deafness in Children

68% of children are candidates

27% decline implantation (↓)

35% have cochlear nerve aplasia (=)

Cochlear Nerve Aplasia

Risk of Progression

Sudden Onset Post-lingual

10 congenital CMV 4 mechanical trauma 3 cochleovestibular anomaly 1 noise induced trauma 1 post-meningitis 1 idiopathic SSNHL 1 unknown 1 mild CN hypoplasia

Risk of Progression

Sudden Onset Post lingual

10 congenital CMV
4 mechanical trauma
3 cochleovestibular anomaly
1 noise induced trauma
1 post-meningitis
1 idiopathic SSNHL
1 unknown
1 mild CN hypoplasia

Risk of Progression

Sudden Onset Post lingual

10 congenital CMV
4 mechanical trauma
3 cochleovestibular anomaly
1 noise induced trauma
1 post-meningitis
1 idiopathic SSNHL
1 unknown
1 mild CN hypoplasia

Congenital CMV and SSD

• 22% of the total cohort

- almost as common as nerve aplasia/hypoplasia
- 46% of those implanted

SSD in cCMV Progresses to Bilateral

Lanzieri et al. Pediatrics 2017

Progression of Hearing Loss in cCMV

Acceptability of Implants in SSD

- surgical risk
- medicalization

Acceptability of Implants in SSD

Implants in SSD

• 1/3 decline, 1/3 CN aplasia, 1/3 cCMV,

risk of progression, sudden onset

Aural Preference Plot - SSD

)))

Aural Preference Plot - SSD

Acute Stimulation

0.5 ± 0.7 Weeks

-**1**1- (((

Early Chronic Stimulation Chronic Stimulation 1.1 ± 0.2 Months 5.8 ± 3.4 Months

Aural Preference Plot - SSD

)))

P1 Localizes to Temporal Lobes

Duration of Stimulation

CI in Congenital SSD

- period of deprivation critical
- abnormal aural preference resolvable
- cochlear implantation very promising in young children with congenital single sided deafness

Functional Impact?

Asymmetry & Speech Perception

PHONAK life is on

Calculation: Spatial Unmasking

(noise at 0°) vs. (noise at 90°)

Calculation: Spatial Unmasking

(noise at 0°) vs. (noise at 90°)

Spatial Unmasking is Possible

Spatial Unmasking is Possible

Inter-Aural/Implant Level & Timing Differences

Binaural Fusion

Inter-Aural/Implant Level & Timing Differences and "Fusion"

(Steele et al. PLoS One. 2015)

Fusion – Image Assembly

• chameleon

- independent eyes
- depth perception
- accurate hunters

Fusion – Image Assembly

• chameleon

- independent eyes
- depth perception
- accurate hunters

Inter-Aural/Implant Level & Timing Differences

Fusion – Image Assembly

• chameleon

- slow prey
- pseudo-fusion

Increased Time & Increased P2 Amplitude

Increased reaction time - emotionAinplicechafter auditory training

Hopyan et al. Child Neuropsych Takangh (2009) al. Clinical Neurophysiology (2009)

Processing = Effort

Binaural fusion & listening effort

Gordon et al. Frontiers in Auditory Cognitive Neuroscience (2013)

Conclusion

- conventional auditory image fusion does not occur
 - absent timing cues
 - disparate time of arrival
- effort required for sensory assembly
 - pseudo fusion
 - time
 - cognitive resource

Understanding Audition

- the "auditory system" makes full use of sensory data
- novel methods of data processing are employed....
- ...precisely because assembling correctly promotes facultative evolution

